双侧胸膜增厚是什么意思| 胃有问题挂什么科| 脚面麻木是什么原因| metoo是什么意思| 一月十号是什么星座| 胖脸女人适合什么发型| 嘴巴右下角有痣代表什么| 代谢是什么意思| 基础代谢率是什么意思| 骨髓不造血是什么病| 霄是什么意思| 浸润癌是什么意思| 血糖低是什么原因| 又什么又什么的什么| 便秘吃什么| vogue是什么牌子| 步后尘是什么意思| 韬的意思是什么| elle中文叫什么| 羽毛球拍磅数是什么意思| 身上长了好多红痣是什么原因| 佛历是什么意思| 计算机二级什么时候考| 泡打粉可以用什么代替| 有肝病的人吃什么好| armour是什么牌子| 人流后吃什么好| 小211是什么意思| 孩子高低肩有什么好办法纠正| 知世故而不世故是什么意思| 什么降血糖| alexanderwang是什么牌子| 己巳五行属什么| 血常规五项能检查出什么病| 獭尾肝是什么病| 碘伏过敏是什么症状| 鼠标cpi是什么意思| 岁月从不败美人什么意思| 血瘀是什么原因造成的| 什么地说话| ambush是什么牌子| 屁股上长痘痘是什么情况| 国企属于什么编制| 冷笑是什么意思| 经期喝茶有什么影响| 掐是什么意思| 处女座男和什么座最配对| 什么是绿茶女| 相思成疾是什么意思| 女人大姨妈来了吃什么最好| 羽衣甘蓝是什么| 食管反流什么症状| 息肉样增生是什么意思| 一什么影子| 心虚吃什么补最快| 品名什么意思| 荨麻疹长什么样图片| 脂膜炎是什么病严重吗| 弊端是什么意思| 发烧惊厥是什么症状| 破财消灾什么意思| 吃什么食物可以补充雌激素| 亿字五行属什么| 户籍地址是什么| 什么是疖肿| 合疗和医保有什么区别| 平字五行属什么| 看见蛇有什么预兆| 机关单位和事业单位有什么区别| 痛风喝酒会有什么后果| 早醒是什么原因造成的| 创伤急救的原则是什么| doneed是什么牌子| 梦见自己疯了什么意思| 查血糖挂什么科| 网球ad是什么意思| 开车穿什么鞋最好| 什么食物维生素b含量高| 阳性是什么意思| hpv12种高危型阳性是什么意思| 电位是什么| 电视剧靠什么赚钱| 宁静致远什么意思| 身体有湿气有什么症状| 恶性循环是什么意思| 什么是医疗器械| 如火如荼是什么意思| 心梗吃什么药好得快| 膂力是什么意思| 试管婴儿长方案是什么| 迷恋一个人说明什么| 长痘痘涂什么药膏| 白袜子是什么意思| 皮损是什么意思| 隔空打牛是什么意思| 稼穑是什么意思| 攻击是什么意思| 子宫肌瘤有什么危害| 梦见海龟是什么意思| 台湾有什么特产| 水是由什么组成的| 汉武帝是什么朝代| 抑制什么意思| 滇红是什么茶| 误人子弟什么意思| 女生为什么会喷水| 蓝莓树长什么样| 为什么姓张的不用说免贵| 掌中宝是什么| 千张炒什么好吃| 肛门不舒服是什么原因| 流量加油包是什么意思| 后脑勺疼是什么原因| 百合什么时候种植| 人红是非多什么意思| 什么是肌张力| 大快朵颐是什么意思| levis是什么牌子| 牙痛上火吃什么药| 哈乐是什么药| 饭后呕吐是什么原因引起的| 经血发黑什么原因| 什么叫辟谷| 泛化是什么意思| 痛风忌吃什么| 大便出血是什么原因| 79年属羊的是什么命| 来例假喝红糖水有什么好处| 三亚在海南的什么位置| 什么东西化痰效果最好最快| 打火机里面的液体是什么| 五塔标行军散有什么功效| 昵称什么意思| 来月经肚子疼是什么原因| 偷梁换柱是什么意思| 九月十九是什么星座| 酸梅汤不适合什么人喝| 乌龟为什么会叫| 7月1日是什么日子| 9.20号是什么星座| 六月是什么季节| ku是什么单位| 玉越戴越亮是什么原因| pa是什么材料| 舍曲林是什么药| 生化什么意思| 獠牙是什么意思| 什么东西最刮油减肥| 尿常规白细胞3个加号什么意思| 虎和什么属相不合| dep是什么意思| 手掌麻是什么原因引起的| 血小板压积偏高是什么意思| 肾动脉狭窄有什么症状| 晚上10点属于什么时辰| 睾丸痛挂什么科| 属羊是什么星座| 便秘吃什么快速通便| 鸟牌是什么牌子的衣服| 无机磷测定是检查什么| 公务员五行属什么| 胃酸过多吃什么| 甲状腺弥漫性改变是什么意思| 肋间神经痛用什么药| 口干口臭什么原因引起的| 第二次世界大战是什么时候| 我们在干什么| 宫颈光滑说明什么| 孕妇喝什么牛奶对胎儿好| 平安夜做什么| 面瘫什么意思| 癃闭是什么意思| 经常想吐恶心是什么原因| 集少两撇是什么字| 淋巴肉为什么不能吃| 卓玛什么意思| 无极是什么意思| 大佐是什么军衔| 数字5代表什么意思| 谢谢谬赞是什么意思| 乌龟不吃食是什么原因| 钢琴10级是什么水平| 人为什么会中暑| 肺结核传染途径是什么| 梦见找孩子什么预兆| 什么的假山| 浚字五行属什么| 肝实质回声欠均匀是什么意思| 吃什么东西补钙| 狼吃什么| coach是什么牌子的包| 白头发吃什么维生素| 什么像什么似的造句| 劫伤是什么意思| 脑炎是什么症状| 菜花是什么病| 足下生辉是什么意思| 儿童肚子痛吃什么药| 迟缓是什么意思| 总打嗝吃什么药| 口若悬河是什么意思| 西辽国在现今什么地方| 熊猫是什么科| 官运是什么意思| 好人是什么意思| 美女如云什么意思| 月经肚子疼是什么原因| 皖鱼是什么鱼| 前途是什么意思| 什么手串最好| 前夕是什么意思| 苏州五行属什么| 做梦梦到蜈蚣是什么意思| 什么样的手相最有福气| 布洛芬不能和什么一起吃| 腺病毒是什么病毒| 赵子龙属什么生肖| 一周年祭日有什么讲究| 精华液是干什么用的| 梦见自己坐火车是什么意思| eb病毒igg抗体阳性是什么意思| 潮热是什么症状| 有人的地方就有江湖什么意思| 农合是什么| 七月十五有什么禁忌| 盲盒是什么意思| 冲动是什么意思| 自言自语说话是什么病| 新生儿头发稀少是什么原因| 热辐射是什么| 人言可畏什么意思| 小厨宝是什么东西| 牛肉和什么相克| 什么驴技穷成语| 乔治白属于什么档次| 头发硬适合什么发型| 褪黑素有什么作用| 辛巳五行属什么| 咖啡什么牌子的好| 番石榴什么时候成熟| tf是什么意思| 梦见杀人是什么意思| 梦见鸡啄我是什么意思| 女人吃什么增加雌激素| 大学毕业是什么学历| 漳平水仙茶属于什么茶| 12年属什么生肖| 超细旦是什么面料| 前列腺增生吃什么食物好| 突然视力模糊是什么原因引起的| 继发性闭经是什么意思| lg手机是什么牌子| 疗养是什么意思| 宁静是什么意思| 什么昆虫最值钱| 梦见自己疯了什么意思| 一蹴而就什么意思| 锦衣卫是干什么的| 股癣是什么样子的图片| 十月初八是什么星座| 招财猫鱼吃什么| 口我什么意思| 什么是电商平台| 葬爱家族是什么意思| 百度
Technical Article

August 04, 2022 by William Bahn

Learn about the main Boolean algebra identities or laws associated with Boolean logic or digital logic.

百度 但我一直没弄清楚什么是营养成分表,具体应该怎么看国家食品安全风险评估中心专家团答:从名称可以看出,营养成分表是一个表格,别看这个表格不大,但是五脏俱全,是一个包含食品营养成分名称、含量和占营养素参考数值(NRV)百分比的规范性表格。

Before delving too far into this article, to better understand it, make sure to read the article before this on the basics of Boolean algebra. You might review that article if you find yourself having difficulty following the concepts or notation used here. With that in mind, let's dive into the main Boolean identities associated with Boolean algebra.

 

Boolean Algebra Laws—What are Boolean Algebra Identities?

Like normal algebra, Boolean algebra has several beneficial identities. An "identity" is merely a relationship that is always true, regardless of the values that any variables involved might take on; similar to laws or properties. Many of these can be analogous to normal multiplication and addition, particularly when the symbols {0,1} are used for {FALSE, TRUE}. However, while this can be useful, some identities are different and that causes confusion for many people. We will be sure to highlight these as we encounter them.

To begin with, Table 1 summarizes these identities, outlines the expressions, and then examines each in detail.

 

Table 1. Expressions for Boolean identities. 

Boolean Identities

IDENTITY EXPRESSION

Logical Inverse

$$ \overline{0} = 1; \;\; \overline{1} = 0 $$

Involution

$$ \overline{\overline{A}} = A $$

 

OR AND

Dominance

$$ A + 1 = 1 $$

 $$ A \cdot 0 = 0 $$

Identity

$$ A + 0 = A $$

 $$ A \cdot 1 = A $$

Idempotence

$$ A + A = A $$

 $$ A \cdot A = A $$

Complementarity

$$ A + \overline{A} = 1 $$

 $$ A \cdot \overline{A} = 0 $$

Commutativity

$$ A + B = B + A $$

 $$ A \cdot B = B \cdot A $$

Associativity

$$ (A + B) + C = A + (B + C) $$

 $$ (A \cdot B) \cdot C = A \cdot (B \cdot C) $$

Distributivity

$$ A + (B \cdot C) \; = \; (A + B) \cdot (A + C) $$

 $$ A \cdot (B + C) = (A \cdot B) + (A \cdot C) $$

Absorption

$$ A \cdot (A + B) = A $$

 $$ A \cdot (A + B) = A $$

DeMorgan's

 $$ A + B = \overline{\overline{A} \cdot \overline{B}} $$

$$ A \cdot B = \overline{ \overline{A} + \overline{B}} $$

 

Each of these identities can be proven by simply creating a fully-enumerated truth table for the expression on the left (of the equality sign, not of the table) and another for the expression on the right. Afterward, the truth table shows that they produce the same result for every possible input combination. For this article's purposes, this approach will be done for each identity.

Despite that being the approach for this article, there is a more elegant way, which is to use previously proven identities to prove subsequent ones. In general, we will not do this primarily because the ordering of the table above is intended to follow a largely intuitive progression and it is not optimized for supporting a chain of Boolean proofs.

It is important to notice that, for each identity involving the OR and/or the AND operator, there is a corresponding identity in which the roles of these two operators are reversed. This is due to the duality of AND and OR.

In all of the expressions in this article, we make no assumption about either the precedence or the associativity of the operators, meaning that we will rely heavily on fully parenthesized expressions. Since we will use the overbar notation for logical negation (the NOT operator), we will use the natural convention that the expression underneath the bar is evaluated and the result of that is then inverted (NOT-ed).

 

A More Detailed Explanation of Boolean Identities

We will now work our way in order through the table of identities, making observations about each, usually including a "common sense" informal proof. In addition to the Boolean expressions, each identity will also be depicted graphically using standard logic schematic symbols. The symbols for NOT, OR, and AND were introduced in the Boolean Basics article mentioned earlier in this article. In addition to these, we will use the BUF symbol to represent a non-inverting buffer. This gate merely copies its input to its output. Furthermore, while we use {0, 1} to represent {FALSE, TRUE} in the Boolean expressions, we will use {LO, HI} to represent them in the schematic or ladder diagrams.

Figure 1 shows the different symbols for the BUF, NOT, OR, and AND logic gates.

 

Figure 1. 

 

Notice that the NOT symbol is simply a BUF symbol followed by a bubble. The bubble represents logical inversion and is the actual NOT gate. Anytime you see a bubble attached to a gate pin, you can detach it from the pin and insert a separate NOT gate in its place without affecting the resulting logic.

Each discussion is followed by a formal proof via fully-enumerated truth tables. For most of the identities, these proofs will not contain any surprises. But they are worth including because some of the less-intuitive proofs might make more sense when you can see how the logic progresses through the tables.

 

Inverse Law

This identity, which is actually two separate identities, is merely the definition of logical negation applied to each of the possible Boolean values.

Below, in Figure 2 you can see an example of LO NOT gates to HI NOT gates and the inverse in Figure 3.

 

LO to HI NOT gate representation.

Figure 2. 

 

$$ \overline{0} \; = \; 1 $$

 

HI?to LO?NOT gate representation.

Figure 3. 

 

$$ \overline{1} \; = \; 0 $$

 

Inverse Law's Boolean Identity Truth Tables 

Since this is our first identity, our proof must be based on the fundamental definitions of the signals and the operators (which will be true of several early identities). As the only operation involved here is negation, we simply site the definition of negation and note that these identities are simply the two rows in that definition.

Below, in Tables 2 and 3, you'll find the truth tables for the logical inverse identity. 

 

Table 2.
PROOF: Logical Negation - $$ \overline{0} = 1 $$ 

 

0

LHS

$$ \overline{0} $$

RHS

1

0

1 1

 

Table 3.

PROOF: Logical Negation - $$ \overline{1} = 0 $$ 

 

1

LHS

$$ \overline{1} $$

RHS

0

1

0 0

 

Involution Law

In mathematics, a function is said to be involute if it is its own inverse. In normal arithmetic (as to Boolean arithmetic), the reciprocal function is involute since the reciprocal of a reciprocal yields the original value, as does multiplying a value twice by -1. In Boolean logic, negation is an involute function because negating a value twice returns the original value (shown in Figure 4). This is analogous to the "double negative" in normal conversation.

 

An example of negating a value twice which yields the original value.

Figure 4. 

 

$$ \overline{\overline{A}} \; = A $$    or    $$ (A')' \; = \; A $$

 

Involution Law's Boolean Identity Truth Table

In Table 4, you can see the truth table for the involution law. 

 

Table 4. 
PROOF: Involution

A

$$ \overline{A} $$ $$ \overline{ \left( \overline{A} \right) } \; = \; \overline{\overline{A}} $$

LHS

$$ \overline{ \overline{A} } $$

RHS

A

0

1 0 0 0

1

0 1 1 1

 

Dominance Law

In normal multiplication, we have the property that anything multiplied by zero yields zero. In a sense, this means that zero has the ability to suppress, mask, or dominate any other value under multiplication. The dominance identity—also known as the "suppression" or "masking" identity"—is similar and merely recognizes that anything that is OR-ed with a TRUE produces a TRUE while anything AND-ed with a FALSE produces a FALSE (see Figures 5 and 6).

 

Figure 5.

 

$$ A + 1 = 1 $$

 

Figure 6.

 

$$ A \cdot 0 = 0 $$

 

While the second property looks the same as normal multiplication, the first property is definitely NOT the same as normal addition. This is something to remember until you are proficient with Boolean algebra. This is because it can be easy to fall back on well-entrenched habits and apply rules from normal algebra to Boolean algebra when they simply aren't valid or fail to exploit rules that are.

 

Dominance Law's Boolean Identity Truth Tables

Below (Tables 5 and 6) you'll see two truth tables for dominance of 1 under OR and dominance of 0 under AND, respectively.

Table 5.
PROOF: Dominance of 1 under OR

A

1

LHS

A+1

RHS

1

0

1 1 1

1

1 1 1

 

Table 6. 
PROOF: Dominance of 0 under AND
A 0

LHS

$$ A \cdot 0 $$

RHS

0

0

0 0 0

1

0 0 0

 

Note that, technically, the proofs given here only apply to the case when the first input is the free variable and the second input is the dominant value for that operation. We could prove that the identity holds when the inputs are swapped, but once we prove that both OR and AND are commutative, those proofs become trivial and uninteresting.

 

Identity Law

Just as 0 is the identity element for normal addition and 1 is the identity element for multiplication, so too are 0 (FALSE) and 1 (TRUE) the identity elements for OR and AND respectively. You can see examples of this in Figure 7 and Figure 8.

 

Figure 7.

 

$$ A + 0 = A $$

 

Figure 8.

 

$$ A \cdot 1 = A $$

 

This Boolean property, more than anything else, is why the addition symbol is used for logical OR, and the multiplication symbol is used for logical AND. However, it is important to remember that, in Boolean algebra, we are NOT adding or multiplying two values together when we use these operators. Using this terminology can be poor form and generally frowned upon (even though it is heard quite regularly). Having said that, the terms "sum" and "product" are widely used and accepted for the results of logical OR and logical AND, respectively. So while it is poor form to talk about "adding A and B," it is acceptable to talk about "the sum of A and B." This may seem odd and even inconsistent but it is simply the result of a compromise that has evolved between mathematically rigorous terminology and practical common parlance. For instance, it is easier and cleaner to speak of "the sum of products" than it is "the OR of ANDs."

 

Identity Law's Boolean Identity Truth Tables

The identity for OR comes directly from the definition of OR when the second input is constrained to be 0, while the identity for AND comes directly from its definition when the second input is constrained to be 1. Therefore, our proofs (Table 7 and Table 8) merely consist of the applicable rows from the definitions of these two operators.

 

Table 7.
PROOF: Identity under OR

A

0

LHS

A+0

RHS

A

0

0 0 0

1

0 1 1

 

Table 8. 
PROOF: Identity under AND
A 1

LHS

$$ A \cdot 1 $$

RHS

A

0

1 0 0

1

1 1 1

 

Note that, technically, the proofs given here only apply to the case when the first input is the free variable and the second input is the identity value for that operation. We could prove that the identity holds when the inputs are swapped, but once we prove that both OR and AND are commutative, those proofs become trivial and uninteresting.

 

Idempotent Law

The term "idempotent" describes an operation that can be carried out any number of times and the effect is the same as if it had only been carried out once. If we either AND a Boolean variable with itself or OR it with itself, we get the same result as the original variable. This means that both AND and OR are idempotent. This property can be expressed in Figure 9 and Figure 10.

 

Figure 9.

 

$$ A + A = A $$

 

Figure 10.

 

$$ A \cdot A = A $$

 

Notice that this is very different than normal arithmetic.

 

Idempotent Law's Boolean Identity Truth Tables

The proof (Tables 9 and 10) of idempotence for both OR and AND follows from examining the definition of each operation under the constraint that both inputs have the same value.

 

Table 9.
PROOF: Idempotence under OR

A

A

LHS

A+A

RHS

A

0

0 0 0

1

1 1 1

 

Table 10. 
PROOF: Idempotence under AND
A A

LHS

$$ A \cdot A $$

RHS

A

0

0 0 0

1

1 1 1

 

Complement Law

A 'complement' (as opposed to a 'compliment') is the opposite of something. In fact, another name for the logical inverse is the complement. When we OR or AND a Boolean value with its complement we end up with the same result regardless of the variable's value. In the case of AND, since we know that either the variable or its complement is FALSE, the logical AND of a variable with its complement will always yield FALSE since the one that is FALSE will dominate. Similarly, since we know one of them is TRUE, the logical OR of a variable with its complement will always yield TRUE because the one that is TRUE will dominate.

You can see this below in Figure 11 and Figure 12.

 

Figure 11. 

 

$$ A + \overline{A} = 1 $$

 

Figure 12. 

 

$$ A \cdot \overline{A} = 0 $$

 

Since this identity only applies when the two inputs are different, our proof merely examines the rows of our defining functions where that is the case. This is a surprisingly powerful identity that often plays a part in reducing or simplifying Boolean expressions.

 

Complement Law's Boolean Identity Truth Tables

To have the property of complementarity, all that is required of a Boolean binary operator is that it be symmetric, meaning that the two rows in its defining truth table (Table 11 and Table 12) with dissimilar inputs produce the same result.

 

Table 11. 
PROOF: Complementarity under OR

A

$$ \overline{A} $$

LHS

$$ A + \overline{A} $$

RHS

1

0

1 1 1

1

0 1 1

 

Table 12.
PROOF: Complementarity under AND
A $$ \overline{A} $$

LHS

$$ A \cdot \overline{A} $$

RHS

0

0

1 0 0

1

0 0 0

 

Note that, technically, the proofs given here only apply to the case when the first input is the uncomplemented free variable and the second input is its complement. We could prove that the identity holds when the inputs are swapped, but once we prove that both OR and AND are commutative, those proofs become trivial and uninteresting.

 

Commutative Law

As in normal arithmetic, the order of the operands for both OR and AND do not matter making them both commutative. Examples can be seen in Figures 13 and 14.

 

Figure 13.

 

$$ A + B = B + A $$

 

Figure 14. 

 

$$ A \cdot B = B \cdot A $$

 

This is also described by saying that AND and OR are 'symmetric' functions.

 

Commutative Law's Boolean Identity Truth Tables

Like complementarity, all that is required for a binary Boolean operator to be commutative is for the two rows in the defining truth table (Tables 13 and 14) to have dissimilar inputs to produce the same output. The corollary to this is that any binary Boolean operator that is commutative is also complementary and vice versa.

 

Table 13. 
PROOF: Cummutativity under OR

A

B

LHS

A + B

RHS

B + A

0

0 0 0

0

1 1 1

1

0 1 1

1

1 1 1

 

Table 14. 
PROOF: Commutativity under AND
A B

LHS

$$ A \cdot B $$

RHS

$$ A \cdot B $$

0

0 0 0

0

1 0 0

1

0 0 0

1

1 1 1

 

Associative Law

Again, as in normal arithmetic with addition and multiplication, the order in which we apply operations when two or more of the same operator are involved does not matter (shown in Figures 15 and 16).

 

Figure 15.

 

$$ (A + B) + C = A + (B + C) $$

 

Figure 16.

 

$$ (A \cdot B) \cdot C = A \cdot (B \cdot C) $$

 

The associativity of OR and AND is not at all obvious. It is tempting to assume that because OR and AND are commutative that they must be associative also. This is not the case, however, and some commutative Boolean operators are not associative. Examples include NAND and NOR.

 

Associative Law's Boolean Identity Truth Tables

Below you'll find the truth tables of associativity under OR (Table 15) and associativity under AND (Table 16).

 

Table 15. 
PROOF: Associativity under OR
A

B

C (A + B) (B + C)

LHS

(A + B) + C

RHS

A + (B + C)

0

0

0 0 0 0 0
0

0

1 0 1 1 1
0

1

0 1 1 1 1
0

1

1 1 1 1 1

1

0 0 1 0 1 1

1

0 1 1 1 1 1

1

1 0 1 1 1 1

1

1 1 1 1 1 1

 

Table 16.
PROOF: Associativity under AND
A

B

C $$ (A \cdot B) $$ $$ (B \cdot C) $$

LHS

$$ (A \cdot B) \cdot C $$

RHS

$$ A \cdot (B \cdot C) $$

0

0

0 0 0 0 0
0

0

1 0 0 0 0
0

1

0 0 0 0 0
0

1

1 0 1 0 0

1

0 0 0 0 0 0

1

0 1 0 0 0 0

1

1 0 1 0 0 0

1

1 1 1 1 1 1

 

Distributive Law

In normal arithmetic, we often use the property that multiplication distributes over addition and know that addition does not distribute over multiplication. However, in Boolean algebra, either operator distributes over the other. Figures 17 and 18 show examples of this. 

 

Figure 17.

 

$$ A + (B \cdot C) = (A + B) \cdot (A + C) $$

 

Figure 18.

 

$$ A \cdot (B + C) = (A \cdot B) + (A \cdot C) $$

 

That OR distributes over AND goes against our engrained understanding of the rules of arithmetic and therefore seems very unnatural. Many people are unaware that it is true or actively believe that it is not true. This is almost entirely an unintended consequence of using the plus-sign and multiplication-sign from normal arithmetic and failing to remember that logical operators and arithmetic operators are simply not the same things. Also that they have absolutely no relation to each other regardless of whether we use the symbols to represent them.

Both of these properties can be extremely useful. It's not surprising that many people can make their work much more difficult because they aren't adept at recognizing where applying the distributivity of OR over AND would greatly streamline things.

 

Distributive Law's Boolean Identity Truth Tables

Table 17 shows the distributivity of AND over OR's truth table, while Table 18 shows the distributivity of OR over AND.

 

Table 17.

PROOF: Distributivity of AND over OR

A

B

C (B + C) $$ (A \cdot B) $$ $$ (A \cdot C) $$

LHS

$$ A \cdot (B + C) $$

RHS

$$ (A \cdot B) +  (A \cdot C) $$

0

0

0 0 0 0 0 0
0

0

1 1 0 0 0 0
0

1

0 1 0 0 0 0
0

1

1 1 0 0 0 0

1

0 0 0 0 0 0 0

1

0 1 1 0 1 1 1

1

1 0 1 1 0 1 1

1

1 1 1 1 1 1 1

 

Table 18.

PROOF: Distributivity of OR over AND

A

B

C $$ (B \cdot C) $$ $$ (A + B) $$ $$ (A + C) $$

LHS

$$ A + (B \cdot C) $$

RHS

$$ (A + B) \cdot (A + C) $$

0

0

0 0 0 0 0 0
0

0

1 0 0 1 0 0
0

1

0 0 1 0 0 0
0

1

1 1 1 1 1 1

1

0 0 0 1 1 1 1

1

0 1 0 1 1 1 1

1

1 0 0 1 1 1 1

1

1 1 1 1 1 1 1

 

Absorption Law

One of the more useful Boolean identities is absorption because it allows users to remove unneeded variables. However, in addition, it also allows us to introduce variables that then frequently allow us to make even greater simplifications (shown in Figures 19 and 20).

 

Figure 19.

 

$$ A + (A \cdot B) = A $$

 

Figure 20.

 

$$ A \cdot (A + B) = A $$

 

Informally, these identities make sense by considering the possible options. In the first case, if A is FALSE, then the entire expression is FALSE, while if A is TRUE then (A + B) is TRUE regardless of the value of B and the expression overall is TRUE. Thus, in either case, the overall expression is equal to the value of A alone.

In the second case, this is even more obvious. If A is TRUE then the overall expression is TRUE, while if A is FALSE the second term is FALSE regardless of the value of B and the overall expression is FALSE. Again, the overall expression is equal to the value of A alone.

These two identities tend to be ones that are difficult for people to recall. Therefore it is useful to see an algebraic proof because the manipulations involved are often easier for people to see and apply than the identities themselves.

In the first identity, we can either "factor out" the A using the distributive property of AND over OR or we can just distribute the OR over the AND. Let's use the first approach as this is the one that is usually easier to see in practice.

 

 

The second identity is actually more intuitive as seen by first distributing the A using the distributive property of AND over OR and then, after applying idempotence, factoring it back out.

 

 

Absorption Law's Boolean Identity Truth Tables

Below, Table 19 shows the truth table for the absorption under OR, and Table 20 shows the absorption under AND.

 

Table 19.

PROOF: Absorption under OR

A

B $$ (A + B) $$

LHS

$$ A \cdot (A + B) $$

RHS

A

0

0 0 0 0

0

1 1 1 0

1

0 1 1 1

1

1 1 1 1

 

Table 20.

PROOF: Absorption under AND

A B $$ (A \cdot B) $$

LHS

$$ A + (A \cdot B) $$

RHS

A

0

0 0 0 0

0

1 0 0 0

1

0 0 1 1

1

1 1 1 1

 

DeMorgan's Theorems of Boolean Logic

DeMorgan's identities, better known as DeMorgan's Theorems, can be extremely powerful and heavily used properties of Boolean logic. In essence, they say that an OR gate can be swapped with an AND gate (and vice-versa) without changing the logic function being implemented provided that ALL of the inputs and outputs to the gate are inverted as well (Figure 21 and Figure 22).

 

Figure 21.

 

$$ A + B = \overline{ \overline{A} \cdot \overline{B} } $$

 

Figure 22.

 

$$ A \cdot B = \overline{ \overline{A} + \overline{B} } $$

 

Recalling that a bubble on either an input or an output of a gate represents logical inversion, DeMorgan's Theorems can be captured compactly as follows in Figure 23.

 

Figure 23.

 

DeMorgan's Theorem Truth Tables

Below in Tables 21 and 22, you'll find example truth tables for DeMorgan's Theorem.

 

Table 21. 

PROOF: DeMorgan's OR to AND

A

B A + B $$ \overline{A} $$


$$ \overline{B} $$


$$ \overline{A} \cdot \overline{B} $$

LHS

$$ A + B $$

RHS


$$ \overline{\overline{A} \cdot \overline{B}} $$

0

0 0 1 1 1 0 0

0

1 1 1 0 0 1 1

1

0 1 0 1 0 1 1

1

1 1 0 0 0 1 1

 

Table 22.

PROOF: DeMorgan's AND to OR

A

B $$ A \cdot B $$ $$ \overline{A} $$


$$ \overline{B} $$


$$ \overline{A} +\overline{B} $$

LHS

$$ A \cdot  B $$

RHS


$$ \overline{\overline{A} + \overline{B}} $$

0

0 0 1 1 1 0 0

0

1 0 1 0 1 0 0

1

0 0 0 1 1 0 0

1

1 1 0 0 0 1 1

 

Continuing Your Boolean Logic Education

Armed with the identities presented here, you are in a position to manipulate Boolean logic expressions and logic diagrams. However, these identities are merely the most fundamental of tools available to you as a logic designer. To become truly proficient at the art, you must also learn some of the many powerful analysis and design techniques that are based upon these fundamentals.

1 Comment
古来稀是什么意思 吃什么英语怎么说 阿魏是什么中药 梦见下暴雨是什么意思 甲状腺低是什么意思
疣是什么意思 9月份什么星座 女子与小人难养也什么意思 刚感染艾滋病什么症状 肚子绞痛吃什么药
鸡子是什么东西 老八是什么意思 排卵期一般是什么时候 一龙一什么填十二生肖 穿什么好呢
1905年是什么朝代 呈味核苷酸二钠是什么 怀孕早期吃什么 ppi是什么药 哈密瓜是什么季节的水果
骨质疏松有什么症状hcv8jop1ns7r.cn 狗鼻子为什么是湿的cl108k.com rm是什么意思jingluanji.com 耳朵前面有痣代表什么hcv8jop3ns7r.cn 五个月宝宝吃什么辅食最好xinmaowt.com
太子是什么生肖hcv9jop6ns7r.cn 月经一直不停有什么办法止血hcv7jop9ns7r.cn 关东煮为什么叫关东煮hcv9jop8ns1r.cn 婴儿泡奶粉用什么水好hcv8jop0ns2r.cn 蜂蜜水什么时间喝最好hcv9jop1ns5r.cn
izzue是什么牌子jiuxinfghf.com 梦见杀牛是什么预兆hcv7jop7ns4r.cn 钾高是什么原因造成的qingzhougame.com 减肥喝什么茶好hcv9jop2ns3r.cn 防弹衣是由什么材料制成的hcv8jop4ns1r.cn
权志龙的团队叫什么hcv8jop3ns9r.cn 肠胃炎不能吃什么fenrenren.com ozark是什么牌子hcv8jop1ns4r.cn 放屁多是什么原因引起的helloaicloud.com 易孕期是什么意思hcv9jop1ns1r.cn
百度